Main topic

Articles

COMPUTER-BASED PERSONALITY JUDGMENTS FROM DIGITAL FOOTPRINTS: THEORETICAL CONSIDERATIONS AND PRACTICAL IMPLICATIONS IN POLITICS

Abstract

Accurately forming personality judgments is of vital importance in a wide range of social interactions. Although people are able to make fairly accurate personality judgments of others, recent technological advances in machine learning made computers better at predicting personality than humans. In this review, we will focus on computer-based personality judgments and their theoretical considerations and practical implications in politics. More precisely, we will discuss (i) the use of social platforms and digital devices in collecting so-called digital footprints, (ii) personality traits that are assessed based on digital footprints, (iii) advantages and disadvantages of using computer-based personality judgments, (iv) persuasive communication based on digital footprints of personality traits, and lastly, (v) the matters of privacy and informed consent. With this review, we aim to provide a guide how to use computer-based personality judgment in a way to serve the public interest.

keywords :

References

    • Al Marouf, Ahmed, Md Kamrul Hasan, and Hasan Mahmud. 2020. ”Comparative analysis of feature selection algorithms for computational personality prediction from social media.” IEEE Transactions on Computational Social Systems 7 (3): 587-599. doi: 10.1109/TCSS.2020.2966910.
    • Alexander III, Leo, Evan Mulfinger, and Frederick L. Oswald. 2020. ”Using Big Data and Machine Learning in Personality Measurement: Opportunities and Challenges.” European Journal of Personality 34 (5): 632-648. doi: 10.1002/per.2305.
    • Amirhosseini, Mohammad Hossein, and Hassan Kazemian. 2020. ”Machine learning approach to personality type prediction based on the myers–briggs type indicator®.” Multimodal Technologies and Interaction 4 (1): 1-15. doi: 10.3390/mti4010009.
    • Apriyanto, Sigit, and Adelina Anum. 2020.”Personality of Politicians as the Object of Public Assessment.” In Proceedings of the 2nd International Conference of Science and Technology for the Internet of Things, Yogyakarta, Indonesia, EAI. doi: 10.4108/eai.20-9-2019.2290820.
    • Azucar, Danny, Davide Marengo, and Michele Settanni. 2018. ”Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis.” Personality and Individual Differences 124: 150–159.  doi: 10.1037/a0030383.
    • Beer, Andrew, and David Watson. 2008. ”Personality judgment at zero acquaintance: Agreement, assumed similarity, and implicit simplicity.” Journal of Personality Assessment 90 (3): 250-260. doi: 10.1080/00223890701884970.
    • Boyd, Ryan L., Paola Pasca, and Kevin Lanning. 2020. ”The personality panorama: Conceptualizing personality through big behavioural data.” European Journal of Personality 34 (5): 599-612. doi: 10.1002/per.2254.
    • Cadwalladr, Carole, and Graham-Harrison Emma. 2018. ”Revealed: 50 million Facebook profiles harvested for Cambridge Analytica in major data breach.” The Guardian. https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
    •  Cadwalladr, Carole. 2017. ”The great British Brexit robbery: How our democracy was hijacked.” The Guardian. https://www.theguardian.com/technology/2017/may/07/the-great-british-brexit-robbery-hijacked-democracy.
    • Chmielewski, Michael S. and Morgan, Theresa A. 2013. Five-factor model of personality. In Gellman M.D., Turner J.R. (eds) Encyclopedia of Behavioral Medicine. New York, NY: Springer.
    • Connelly, Brian S., and Deniz S. Ones. 2010. “An other perspective on personality: Meta-analytic integration of observers’ accuracy and predictive validity.” Psychological Bulletin 136 (6): 1092–1122. doi: 10.1037/a0021212.
    • Deeva, Irina. 2019. “Computational Personality Prediction Based on Digital Footprint of A Social Media User.” Procedia Computer Science 156: 185-193. doi: 10.1016/j.procs.2019.08.194.
    • Eichstaedt, Johannes C., Robert Smith, Raina M. Merchant, Lyle H. Ungar, Patrick Crutchley, Daniel Preoţiuc-Pietro, David A. Asch, and Andrew H. Schwartz. 2018. “Facebook language predicts depression in medical records.” Proceedings of the National Academy of Sciences 115 (44): 11203-11208. doi: 10.1073/pnas.1802331115.
    • Farnadi, Golnoosh, Geetha Sitaraman, Shanu Sushmita, Fabio Celli, Michal Kosinski, David Stillwell,  Sergio Davalos, Marie-Francine Moens, and Martine De Cock. 2016. “Computational personality recognition in social media.” User modeling and user-adapted interaction 26 (2): 109-142. doi: 10.1007/s11257-016-9171-0.
    • Funder, David C. 2012. “Accurate personality judgment.” Current Directions in Psychological Science 21 (3), 177–182. doi: 10.1177/0963721412445309.
    • Garcia, Danilo, and Sverker Sikström. 2014. “The dark side of Facebook: Semantic representations of status updates predict the Dark Triad of personality.” Personality and individual differences 67: 92-96. doi: 10.1016/j.paid.2013.10.001.
    • Gladstone, Joe J., Sandra C. Matz, and Alain Lemaire. 2019. “Can psychological traits be inferred from spending? Evidence from transaction data.” Psychological science  30 (7): 1087-1096. doi: 10.1177/0956797619849435.
    • González, Roberto J. 2017. “Hacking the citizenry?: Personality profiling,‘big data’and the election of Donald Trump.” Anthropology Today 33 (3): 9-12. doi: 10.1111/1467-8322.12348.
    • Grassegger, Hannes, and Krogerus Mikael. 2017. “The data that turned the world upside down.” Vice Motherboard. https://www.vice.com/en/article/mg9vvn/how-our-likes-helped-trump-win
    • Hall, Andrew N., and Sandra C. Matz. 2020. “Targeting item–level nuances leads to small but robust improvements in personality prediction from digital footprints.” European Journal of Personality 34 (5): 873-884. doi: 10.1002/per.2253.
    • Heawood, Jonathan. 2018. “Pseudo-public political speech: Democratic implications of the Cambridge Analytica scandal.” Information Polity 23 (4): 429-434. doi: 10.3233/ip-180009.
    • Hinds, Joanne, and Adam Joinson. 2019. “Human and computer personality prediction from digital footprints.” Current Directions in Psychological Science 28 (2): 204-211. doi: 10.1177/0963721419827849.
    • Hinds, Joanne, Emma J. Williams, and Adam N. Joinson. 2020. ““It wouldn’t happen to me”: Privacy concerns and perspectives following the Cambridge Analytica scandal.” International Journal of Human-Computer Studies 143: 102498. doi: 10.1016/j.ijhcs.2020.102498.
    • Hirschmüller, Sarah, Boris Egloff, Steffen Nestler, and Mitja D. Back. 2013. “The dual lens model: A comprehensive framework for understanding self–other agreement of personality judgments at zero acquaintance.” Journal of Personality and Social Psychology 104 (2): 335–353. doi: 10.1037/a0030383.
    • Hirsh, Jacob B., Sonia K. Kang, and Galen V. Bodenhausen. 2012. “Personalized persuasion: Tailoring persuasive appeals to recipients’ personality traits.” Psychological science 23 (6): 578-581. doi: 10.1177/0956797611436349.
    • Koops, Bert-Jaap. 2011.  ”Forgetting footprints, shunning shadows: A critical analysis of the right to be forgotten in big data practice.” SCRIPTed 8: 229-256. doi: 10.2966/scrip. 080311.229.
    • Kosinski, Michal, David Stillwell, and Thore Graepel. 2013. “Private traits and attributes are predictable from digital records of human behavior.” Proceedings of the national academy of sciences 110 (15): 5802-5805. doi: 10.1073/pnas.1218772110.
    • Krotzek, Lennart J. 2019. “Inside the voter’s mind: the effect of psychometric microtargeting on feelings toward and propensity to vote for a candidate.” International Journal of Communication 13: 3609-3629.
    • Lambiotte, Renaud, and Michal Kosinski. 2014. “Tracking the digital footprints of personality.” Proceedings of the IEEE 102 (12): 1934-1939. doi: 10.1109/JPROC.2014.2359054.
    • Matz, Sandra C., and Oded Netzer. 2017. “Using big data as a window into consumers’ psychology.” Current Opinion in Behavioral Sciences 18: 7-12. doi: 10.1016/J.COBEHA.2017.05.009.
    • Matz, Sandra C., Michal Kosinski, Gideon Nave, and David J. Stillwell. 2017. “Psychological targeting as an effective approach to digital mass persuasion.” Proceedings of the national academy of sciences 114 (48): 12714-12719. doi: 10.1073/pnas.1710966114.
    • Matz, Sandra, Michal Kosinski, David Stillwell, and Gideon Nave. 2017. “Psychological Framing As an Effective Approach to Real-Life Persuasive Communication” NA – Advances in Consumer Research 45: 276-281.
    • Mõttus, René, Dustin Wood, David M. Condon, Mitja D. Back, Anna Baumert, Giulio Costantini, Sacha Epskamp, et al. 2020. “Descriptive, predictive and explanatory personality research: Different goals, different approaches, but a shared need to move beyond the Big Few traits.” European Journal of Personality 34 (6): 1175-1201. doi: 10.31234/osf.io/hvk5p.
    • Prichard, Eric C. 2021. “Is the Use of Personality Based Psychometrics by Cambridge Analytical Psychological Science’s “Nuclear Bomb” Moment?.” Frontiers in Psychology 12: 581448. doi: 10.3389/fpsyg.2021.581448.
    • Risso, Linda. 2018. “Harvesting your soul? Cambridge analytica and brexit.”  In Brexit Means Brexit? The Selected Proceedings of the Symposium, Akademie der Wissenschaften und der Literatur , pages 75-90, Mainz, Germany, Akademie der Wissenschaften und der Literatur.
    • Schoedel, Ramon, Quay Au, Sarah T. Völkel,  Florian Lehmann, Daniela Becker, Markus Bühner, Bernd Bischl, Henrich Hussmann, and Clemens Stachl. 2018. “Digital footprints of sensation seeking: A traditional concept in the big data era.” Zeitschrift für Psychologie 226 (4): 232–245.  doi: 10.1027/2151-2604/a000342
    • Schwartz, Andrew, Johannes C. Eichstaedt, Margaret L. Kern, Lukasz Dziurzynski, Stephanie M. Ramones, Megha Agrawal, Achal Shah, et al. 2013. “Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach.” PloS one 8(9): e73791. doi: 10.1371/journal.pone.0073791
    • Settanni, Michele, Danny Azucar, and Davide Marengo. 2018. “Predicting individual characteristics from digital traces on social media: A meta-analysis.” Cyberpsychology, Behavior, and Social Networking 21 (4): 217-228. doi:10.1089/cyber.2017.0384.
    •  Skowron, Marcin, Marko Tkalčič, Bruce Ferwerda, and Markus Schedl. 2016. ”Fusing social media cues: personality prediction from twitter and instagram.” In Proceedings of the 25th international conference companion on world wide web, pages 107-108, Geneva, Switzerland, International World Wide Web Conferences Steering Committee. doi: 10.1145/2872518.2889368.
    • Stachl, Clemens, Florian Pargent, Sven Hilbert, Gabriella M. Harari, Ramona Schoedel, Sumer Vaid, Samuel D. Gosling, and Markus Bühner. 2020. ”Personality research and assessment in the era of machine learning.” European Journal of Personality 34 (5): 613-631. doi: 10.1002/per.2257.
    • Stachl, Clemens, Quay Au, Ramona Schoedel, Samuel D. Gosling, Gabriella M. Harari, Daniel Buschek,  Sarah T. Völkel, et al. 2020. ”Predicting personality from patterns of behavior collected with smartphones.” Proceedings of the National Academy of Sciences 117 (30): 17680-17687. doi: 10.1073/pnas.1920484117/-/DCSupplemental.y
    • Sumner, Chris, Alison Byers, and Matthew Shearing. 2011. ”Determining personality traits & privacy concerns from facebook activity. Black Hat Briefings 11 (7): 197-221.
    • Thielmann, Isabel, Benjamin E. Hilbig, and Ingo Zettler. 2020. ”Seeing me, seeing you: Testing competing accounts of assumed similarity in personality judgments.” Journal of personality and social psychology 118 (1): 172-198. doi: 10.1037/pspp0000222.
    • Tskhay, Konstantin O., and Nicholas O. Rule. 2014. “Perceptions of personality in text-based media and OSN: A meta-analysis.” Journal of Research in Personality 49: 25–30. doi: 10.1016/j.jrp.2013.12.004
    • Usher, James, and Pierpaolo Dondio. 2020. “BREXIT: Psychometric Profiling the Political Salubrious through Machine Learning: Predicting personality traits of Boris Johnson through Twitter political text. “ In Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics, pages 178-183, Biarritz France, Association for Computing Machinery. doi: 10.1145/3405962.3405981
    • Wan, Danlin, Chuang Zhang, Ming Wu, and Zhixiang An. 2014. “Personality prediction based on all characters of user social media information.” In Chinese national conference on social media processing, pages 220-230, Berlin, Germany, Springer. doi: 10.1007/978-3-662-45558-6_20.
    • Yamada, Kosuke, Ryohei Sasano, and Koichi Takeda. 2019. “Incorporating Textual Information on User Behavior for Personality Prediction”. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 177–182, Florence, Italy,  Association for Computational Linguistics. doi: 10.18653/v1/P19-2024
    • Youyou, Wu, Michal Kosinski, and David Stillwell. 2015. “Computer-based personality judgments are more accurate than those made by humans.” Proceedings of the National Academy of Sciences 112 (4): 1036-1040. doi: 10.1073/pnas.1418680112.
    • Zarouali, Brahim, Tom Dobber, Guy De Pauw, and Claes de Vreese. 2020. “Using a personality-profiling algorithm to investigate political microtargeting: assessing the persuasion effects of personality-tailored ads on social media.” Communication Research 0093650220961965. doi: 10.1177/0093650220961965.
    • Zhong, Xiao-Feng,  Shi-Ze Guo, Liang Gao, Hong Shan, and Di Xue. 2018. “A general personality prediction framework based on facebook profiles.” In Proceedings of the 2018 10th International Conference on Machine Learning and Computing, pages 269-275, Macau, China, ACM. doi: 10.1145/3195106.3195124.
PERIODICS Serbian Political Thought 4/2021 4/2021 UDC: 159.923:004.8 207-226